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Cardiovascular diseases (CVDs) are the leading health problem worldwide. Investigating causes and mechanisms of CVDs calls
for an integrative approach that would take into account its complex etiology. Biological networks generated from available data
on biomolecular interactions are an excellent platform for understanding interconnectedness of all processes within a living cell,
including processes that underlie diseases. Consequently, topology of biological networks has successfully been used for identifying
genes, pathways, andmodules that governmolecular actions underlying various complex diseases. Here, we review approaches that
explore and use relationships between topological properties of biological networks and mechanisms underlying CVDs.

1. Introduction

Cardiovascular diseases (CVDs) cover a broad range of
disorderswhich affect different parts of cardiovascular system
and include coronary diseases, carotid diseases, peripheral
arterial diseases, and aneurysms. They remain the leading
health problem which affects more than 80 million individu-
als in theUnited States alone [1]. Based on the data from 2009,
in the United States, on average one person dies of CVDs
every 40 seconds. Coronary heart disease alone causes one
out of every six deaths [1]. By year 2020 it is expected that
Brazil, Russia, India, and China will contribute significantly
to a global increase of additional 4% of deaths caused by
CVDs [2].

Etiology of cardiovascular diseases is not simple. There
are forms of CVDs that are Mendelian disorders resulting
from a mutation on a single gene [3]. However, the majority
are complex diseases occurring as a result of an interplay
between multiple genes [3], as well as a variety of factors
such as diet, dyslipidemia, hypertension, and body mass
index [4]. For addressing this complexity, an integrative
approach, that would take into account coaction between the
multiple causes behind CVDs, seems to be the method of
choice. This is because properties of a complex system as a
whole cannot be completely discovered by simply observing
properties of individual parts of the system without taking

into account their interconnectedness [5]. Hence, different
systems biology approaches have been used in CVD research,
which has recently been reviewed elsewhere [6–9].

Amathematical concept of anetworkhas been introduced
in systems biology as it accurately captures the innerworkings
of many complex biological systems. For example, metabolic
pathways are interconnected into a network, providing
redundancy, adaptability, and robustness [10], thus enabling
energy-efficient production of metabolites. Also, the fact that
a specific network topology comes as a direct consequence
of biological processes occurring between the elements of the
underlying system highlights the importance of the topology
as a valuable source of new biological knowledge.

In this survey, we focus on network-based systems biol-
ogy approaches to CVD research. More specifically, we aim
to investigate the extent to which network topology has
contributed to novel medical insights into CVDs.

2. Topology of Biological Networks Reveals
Disease Genes, Modules, and Pathways

2.1. Biological Data and Networks. Recent advances in high-
throughput techniques have resulted in a number of large-
scale biological data sets. In Table 1, we list commonly
used databases of molecular interaction and disease ontol-
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Table 1: Databases of human molecular interaction and disease ontology data.

Database name Type of data URL
BioGRID PPI and genetic interactions http://thebiogrid.org/

HPRD
PPI, disease associations, posttranslational modifications, tissue
expression, subcellular localization, and enzyme/substrate
relationships

http://www.hprd.org/

DIP Experimentally determined PPI http://dip.doe-mbi.ucla.edu/dip/
HomoMINT PPI http://mint.bio.uniroma2.it/HomoMINT/
OPHID PPI http://ophid.utoronto.ca/ophidv2.204/

KEGG
Pathway maps, human diseases, drugs, orthology groups, genes,
relations within genes, metabolites, biochemical reactions, and
enzymes

http://www.genome.jp/kegg/

OMIM Information on genes and genetic disorders http://www.ncbi.nlm.nih.gov/omim

ogy data for H. sapiens. These databases accumulate bio-
logical information, including interactions and relation-
ships among biological macromolecules and metabolites,
such as protein-protein interactions (PPI), genetic interac-
tions, or enzyme-substrate relationships. The available data
also include gene functional annotations, pathway maps,
information on genetic disorders, and disease associations.
As an example of the scale of available data, BioGRID
currently lists 303,268 nonredundant physical interactions
between 51,129 proteins across 48 organisms, while DRYGIN
(http://drygin.ccbr.utoronto.ca/) contains 5,482,948 genetic
interactions for S. cerevisiae.

A network is the same as a mathematical concept of a
graph, denoted as a pair 𝐺 = {𝑉, 𝐸}, where 𝑉 is a set of
vertices (nodes) and 𝐸 is a set of links (edges) that connect
pairs of nodes [11]. When constructing a graph it is necessary
to determine how biological elements and relations between
them correspond to nodes and edges. For example, an edge
in a protein network can be placed between two proteins if
they bind together to perform their biological function; this
results in a commonly used protein-protein interaction (PPI)
network. Conversely, an edge between two proteins can also
be placed if the two proteins share a common trait, such as
being targeted by the same drug or causing the same disease.
These associations are usually found by mining the scientific
literature, resulting in an association network. Other highly
exploited networks are genetic interaction networks, where
genes correspond to nodes in the graph and edges repre-
sent functional associations between genes: an interaction
between two genes occurs when the result of mutations
in the genes is not just a combination of phenotypes of
those mutations [12]. A metabolic network is a union of all
metabolic pathways within a cell, where nodes correspond to
metabolites and enzymes, and directed edges are metabolic
reactions [10, 13, 14]. Regulator-gene interactions can be
summed up into a transcriptional regulatory network [15].
Given various experimental limitations, up till date, only a
handful of transcriptional regulatory networks for complex
biological systems have been defined [16].

Graph theoretic approaches offer insight into the struc-
ture of these networks and allow us to single out properties
of a network, or its parts, which are different from expected
by random. Such findings can reveal the connection between
a specific topological characteristic and related biological

function or a process, such as a disease. Here, we will not
provide details on global and local network properties nor
specific algorithms commonly used in graph theory, such as
algorithms for network clustering or alignment. For more
details on these topics, see [17–20].

Note that a limiting factor regarding network analyses is
the quality of data. Although large amounts of biological data
are available, they are still noisy and incomplete. Techniques
used for obtaining the data are often biased—they may
not provide enough sensitivity to detect all changes in the
system [21]. Outcomes of experiments depend not only on
experimental design but also on the stringency of conditions
of the experiments: for example, too stringent conditions can
lead to false negative interactions, as opposed to false positive
results obtained from experiments that were not stringent
enough. Also, depending on the focus of the research and
experimental design, some genes/proteins can be favoured
and their possible interactions are explored more often, such
as those of disease genes. This can impose a particular
structure in the network, for example, false hubs, without
reflecting the underlying network topology. In addition, not
all biological processes can be accurately represented as
interactions (edges in the network) between two elements.
Often a process in a biological system requires more than
two elements and involves different types of interactions.
However, a benefit is that network representation gives an
opportunity to reduce the complexity of biological data
that is required for performing computational analyses.
Different data sources offer various insights into underlying
biological processes, and, only if integrated, they will yield
the full meaning. Network analysis provides exactly insight
into interconnectedness of the data that describe different
processes within a living cell. Below we give a short overview
of methods that use biological networks to extract new
knowledge about diseases. Specifically, we focus on network
biology in CVDs.

2.2. Exploring Disease through Network Topology. Topology
of PPI networks has widely been explored and used for
inferring involvement of proteins in biological functions and
processes, including diseases. It has been shown that proteins
that are closer in the network are more likely to perform
the same function [22]. In particular, association by guilt
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approach was used to infer functions of unannotated pro-
teins: the direct neighbourhoods of proteins were examined
looking for most common functions among annotated direct
neighbours [23]. Similarly, the n neighbourhood of proteins
[24] and shared neighbours of proteins [25] were analysed to
annotate functions of unannotated proteins.These properties
were used to associate genes with diseases using linkage
methods (nomenclature adopted from [26]). In that sense, it
has been shown that directly linked proteins in the human
PPI network are more likely to cause similar diseases [27,
28] (simplified concept illustrated in Figure 1, panel (a)). A
variant of linkagemethodwas successfully applied to discover
genes related to Alzheimer’s disease [29].

Several other methods have shown that PPI network-
topology around proteins is a predictor of their functionor
their involvement in disease [30–32]. The local topolog-
yaround a protein in a PPI network was summarized into
atopological “signature” of a protein, graphlet degree vector
(GDV) [30]. Proteins in the PPI network were grouped
basedon similarity of their “signatures,” or GDV similarity,
and ithas been shown that proteins within those groups
belong tosame protein complexes, perform the same biologi-
cal function, and are part of the same subcellular components
[30]. Also, GDV similarity between proteins in the PPI
network was used as a similarity measure for clustering pro-
teins usingseries of clustering methods, resulting in clusters
significantlyenriched in cancer and disease related proteins.
This leads topredictions of new melanogenesis related genes
purely fromthe topology of the human PPI network and the
predictionswere phenotypically validated [31, 32].

Described methods used clustering of nodes in thenet-
work based on their topological properties (simplifiedex-
ample is illustrated in Figure 1, panel (b)). Note that thisis
different from clustering the network by identifying itstopo-
logicalmodules: locally dense neighbourhoods in thenetwork
called graph clusters or network communities [17] (Figure 1,
panel (c)). It is generally accepted that a subset of nodes is a
good cluster, or community, if the induced subgraph is dense,
with relatively few connections between the cluster nodes
and nodes that are in the remaining part of the graph [33].
These topological modules oftencorrespond to functional
modules: aggregations of nodessimilar in function, and to
disease modules: sets of nodesthat contribute to a specific
disease phenotype [26]. Mitra et al. [34] thoroughly reviewed
integrative approaches foridentifying such functional mod-
ular structures in biologicalnetworks. Accordingly, module-
based methods use assumption that nodes belonging to
same topological or functionalmodule are highly likely to
be involved in the same disease.These methods have often
been applied in studies related tocancer [35–37]. Another
example of this principle is modulesidentified using commu-
nity discovery algorithm [38], which resultedin the discovery
of new links between Alzheimer’s disease and CVDs at the
coexpression and coregulation levels [39].Several module-
based methods have been applied toresearch of CVDs, which
will be elaborated in more detaillater in this survey.

An interesting survey on different methods that use
networktopology for predictions of disease genes [40]pointed
out that many of the methods that rely on clusteringal-

gorithms, or linkage-based inference, are outperformedby
random walk-based methods. Random walkers diffusealong
the network starting from disease involved nodes withthe
same probability of visiting any neighbouring node—most
visited genes are considered to be on the diseasepathway
and potentially involved in a particular disease. Amethod for
prioritization of candidate disease genes usingrandom walk
analysis was tested on 110 disease gene families and signif-
icantly outperformed methods based on distance measures
such as linkage-based methods or methods based on shortest
paths to disease proteins [41].

2.3. Disease Networks. We are currently witnessing an
increase in using disease networks, networks of biomolecules
involved in a particular disease or a group of diseases,
for exploring relationships between different diseases. For
example, Goh et al. [42] created a bipartite “diseasome”
network, where one partition consists of a set of diseases and
the other of a set of disease genes (and where, by definition of
a bipartite network, all edges in the network are between the
partitions).They used it to generate two network projections:
disease gene network and human disease network (which
they found is clustered according to major disorder classes).
By exploring centrality and peripherality of genes in the gene
network, they showed that contrary to essential human genes
that encode hub proteins—highly linked proteins in network,
the majority of disease genes do not encode hubs and are
localized in the periphery of the network [42].

Janjić and Pržulj [43] demonstrated the existence of
topologically and functionally homogeneous “core subnet-
work” of the human PPI network, which is enriched in
disease genes, drug targets, and a small number of genes that
have theoretically been proposed to be required for tumour
formation, referred to as “driver genes” [44]. They call this
subnetwork the “Core Diseasome” [43] and postulate it is the
key to disease onset and progression and hence should be the
primary object of therapeutic intervention.

CVD networks have recently gained interest, serving
as a basis for a better understanding of the complexity
behind the disease [6, 7]. In the next section we focus on
various CVD networks with emphasis on the use of network
topology. Note that henceforth we will use terms gene and
protein interchangeably, as topological properties of proteins,
represented as nodes the in PPI network, are commonly
used to gain new knowledge about genes that encode these
proteins.

3. Using Biological Networks in
Research of CVDs

3.1. CVDNetworks. Therewere several attempts to create bio-
logical networks relevant to various cardiovascular disorders.

A combination of methods based on experimental cell
culture and data mining was used to collect a compre-
hensive set of vascular and atherosclerosis related genes
[45]. In particular, public databases such as PubMed (http://
www.ncbi.nlm.nih.gov/pubmed) were searched for genes rel-
ated to the terms atherosclerosis, smooth muscle cell, endothe-
lial cell, apoptosis, cytokine, and adhesion molecule.This list of
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Figure 1: Using network topology to infer elements involved in disease. Panel (a): green node is associated with disease based on its
neighbouring disease nodes (shown in red). Panel (b): nodes bordered in blue are part of the same cluster based on similar topology around
them. Green node is associated with disease based on the cluster’s enrichment in disease nodes (shown in red). Panel (c): nodes bordered
in blue are part of the same graph cluster or community, in the network. Green nodes are associated with disease based on the community’s
enrichment in disease nodes (shown in red). Panel (d): node shown in green is associated with the disease, as a common node on shortest
paths between nodes related to disease (shown in red).

genes was then combined with genes obtained from sequenc-
ing clones from stimulated vascular cells in culture. Next, a
large association network was constructed through semantic
mining of published literature—an association between two
genes was extracted from sentences in scientific literature that

contained two gene names and a verb as defined by user
context file. Also, coronary artery segments isolated from
explanted hearts of 22 cardiac transplant patients were exper-
imentally processed, resulting in significant gene expression
profiles obtained using significance analysis of microarrays
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(SAM) [46]. Then, for each gene from the large association
network, a subnetwork was constructed. The subnetwork
consisted of that gene and its neighbouring genes which were
obtained using SAManalysis. A cumulative and average SAM
scores were computed for each subnetwork and were used
to identify subnetworks of high overall significance. Their
central, “nexus,” geneswere singled out as potential regulators
that may cause the disease phenotype [45].

A similar method was used for constructing an assoc-
iation network of human in-stent restenosis [47]. Genes rele-
vant to the disease were collected using methods based on
experimental cell culture and data mining, while associations
between genes were obtained through text mining of
MEDLINE (http://www.nlm.nih.gov/pubs/factsheets/med-
line.html) abstracts. Again, a subnetwork for each gene was
constructed containing the gene and its direct neighbours in
the network. Gene expressions were experimentally assessed
from tissue samples of 89 patients using SAM analysis. Sub-
networks were next compared based on the overall signifi-
cance score calculated using SAM scores of the subnetwork
members. Central nodes of these subnetworkswere identified
as successful targets for drug therapy.

Skogsberg et al. [48] revealed a regulatory gene network
of cholesterol-responsive atherosclerosis genes that control
formation of plaques in arteries, using analysis of gene
expression in response to plasma cholesterol-lowering. They
established a list of genes related to atherosclerosis, foam cells,
smooth muscle cells, endothelial cells, and T cells using auto-
mated text mining of PubMed abstracts. The resulting net-
work was proposed as a starting point for future research of
novel atherosclerosis therapies.

Another PPI network of cardiovascular diseases was
created from CVD related proteins that were identified using
protein annotations fromUniprot database (searching for the
keyword cardiovascular) and known protein-protein interac-
tions fromHPRD [49]. Only proteins with at least one known
interaction in HPRD were taken into account. In addition to
these proteins, their interacting partners in the PPI network,
which also appear in the signalling pathways from KEGG
database, were included in the network. The resulting CVD
PPI network consisted of 55 proteins and 122 PPIs and was
used to identify network CVD biomarkers as follows. (1)
Single biomarker discovery was based on significantly dif-
ferent expressions between proteins in control patients and
disease patients (significantly low 𝑃 values); biomarkers were
evaluated using not only 𝑃 values but also support vector
machine (SVM). (2) A candidate pair biomarker is composed
of two single biomarkers and a PPI between them. Pair
biomarkers were selected based on the best performance in
SVM and significantly low 𝑃 values. (3) Candidate triple
biomarker is composed of three single biomarkers and PPIs
between every pair among them. Again, triple biomarkers
were selected based on the best performance in SVM and
significantly low𝑃 values. (4)Multiple CVDbiomarkers were
identified in similar manner as combinations of different
single ones, pair ones, and triple biomarkers.

As mentioned in Section 2.1, despite their important
biological role, human transcriptional regulatory networks
are still largely unexplored. Some of the reasons are experi-

mental limitations and human cellular diversity [16]. How-
ever, there have been several attempts to construct a car-
diac transcription network. For example, mRNA profiles
were integrated with DNA-binding events of key cardiac
transcription factors (TFs) [50]. Insights into combinatorial
regulation by cardiac TFs showed that they compensate
each other’s functions. Cardiac transcription network was
built based on findings from RNA knockdown experiments.
Target genes that are important for the cardiovascular system
were chosen based on their biological roles such as muscle
contractility and cardiac growth. The network depicted the
common regulation of several transcriptional factors and the
impact of the posttranscriptional modulation of expression
levels by miRNAs [50]. Another transcriptional network of
cardiac TFs and genes important for cardiac function was
constructed based on coexpression analysis involving TFs
critical for hearth development. Coregulatory relationships
between five such TFs were revealed [51]. These types of
relationships can give a new perspective for understanding
the complexity of CVDs.

The quality of biological data is crucial for constructing
a reliable CVD network, as discussed in Section 2.1. New
technologies, such as next generation sequencing platforms,
have significantly increasedDNA sequencing output [52] and
as such will largely increase the size of available biological
data.Therefore, next generation sequencingmethods for gene
expression profiling will change the approaches to studying
many common complex disorders, including CVDs [53].The
resulting new insights into underlying mechanisms of CVDs
will yield more complete CVD networks and open a window
of opportunities for exploring the topology of these networks.

3.2. Correlating Network Topology with CVD Mechanisms.
Several authors tried to explore whether basic topological
information from a biological network, such as connectivity
of the nodes, can be correlated with biological properties
required for CVD onset and progression.

One example is a global PPI network in heart failure
(HF) [54], created as a subnetwork of PPIs from HPRD that
includes HF relevant genes. Next, differentially expressed
genes in HF were identified from microarray data encoding
molecular profiles of healthy versus HF subjects. Proteins
encoded by these significantly differentially expressed genes
were also included in the HF PPI subnetwork. This network
was used to explore the relationship between gene coex-
pression levels and their connectivity in the HF network.
It was discovered that hub proteins in the network are
encoded by genes that display a significant diversity of
coexpression patterns in comparison to peripheral proteins.
However, hub proteins are not necessarily encoded by genes
that are significantly differentially expressed. Analysis of
gene ontology (GO) terms [55] revealed the relationship
between connectivity of the proteins in this network and their
involvement in specific biological processes, such as processes
related to cardiac remodelling.

In their later work, the same authors explored dilated
cardiomyopathy (DCM) genes [56], as DCM is recognised
as a leading cause of HF. DCM genes were identified using
gene expression profiles from three independent datasets,

http://www.nlm.nih.gov/pubs/factsheets/medline.html
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while associations with HF were identified using literature
mining.HumanHFPPI networkwas created using PPIs from
HPRD by including genes known to be involved in HF and
genes from the gene expression datasets along with biological
pathways associated with them. Again, connectivities of
nodes (proteins) in HF PPI network were compared to
their gene expression patterns. Differential gene expression
was measured using SAM analysis, resulting in divalues
representing genes’ score of class differentiation. Focusing on
significantly differentially expressed genes, it was found that
superhubs and hubs in the network had a lower range of
divalues, while genes that encoded peripheral proteins in the
network had a higher range of divalues.

Severalmodule-based approacheswere applied to various
CVD networks attempting to identify functional modules
related to the disease or discover new associations between
genes and disease. Diez et al. [57] created a combined
gene association and correlation network, using data from
47 microarrays from a database of carotid endarterec-
tomies (Biobank of Karolinska Endarterectomies, BiKE
(http://ki.se/start)). The gene correlation network was con-
structed using statistical analysis of gene expression data.
The association network was constructed using the list of
differentially expressed genes, by performing literature search
for each gene symbol and association keywords such as “gene
A activates gene B.” The networks were then merged into
an undirected network of atherosclerosis. This network was
searched for active modules based on closeness centrality
using jActiveModules Cytoscape plugin [58]. APOC1 gene
was differentially expressed in atherosclerotic plaque and
related to several important GO categories characteristic of
the disease mechanism, so it was selected for a more detailed
analysis. Hence, among detectedmodules, the one containing
APOC1 genewas further inspected.Thismodule was checked
for GO enrichment. GO categories relevant to atherosclerosis
mechanisms and etiology that were identified in this module
were all characteristic of APOC1 gene, suggesting its impor-
tance in this disease.

Ischemic dilated cardiomyopathy (ICM) is one of the
main pathological forms of DCM. A set of genes differen-
tially expressed in ICM, downloaded from gene expression
omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/), and
cardiacmyocytes proteins retrieved fromhumanprotein atlas
(HPA) [59] were merged to create another CVD relevant
PPI network [60]. Information about PPIs was integrated
from several public databases.The analysed largest connected
component of this PPI network was divided in four layers,
based on subcellular localization information. This revealed
that the extracellular and plasma membrane layers contained
more downregulated genes, while cytoplasm and nucleus
contained more upregulated genes. Next, significantly over-
represented biological processes (BPs) were identified, and
PPI network containing only proteins related to these GO
BPs was then divided into 12 clusters according to BPs. It was
shown that the number of PPIs between proteins involved in
different BPs was associated with differential gene expression
patterns.

Rende et al. [61] used topological features of PPI networks
in search of genes common to CVDs and other diseases,

by identifying functional modules of genes. They extended
a core CVD network, consisting of proteins known to be
associated with CVDs (manually curated from the literature),
by including their direct interactors in PPI network, resulting
in a cardiovascular disease “functional linkage network”
(CFN). Hub proteins in this network were considered to be
the key nodes that regulate molecular mechanisms of CVDs
and interdependence between CVDs and other complex
disorders. These hubs were identified using distributions
of node degrees and betweenness centralities. Functional
modules, highly connected subgraphs, were identified using
a modularity measure based solely on topological properties,
allowing modules to overlap. All hub proteins appeared in
these functional modules. Presence of a protein in multiple
functional modules in addition to its high connectivity
implied that any changes regarding protein would affect all
its functional modules. Next, proteins in functional modules
were matched to diseases from OMIM database: 19 modules
were associated with CVDs. Also, modules associated with
at least two diseases were examined for functional GO term
enrichment and were shown to be functionally linked. This
approach revealed some significant complex disorders that
cooccur with CVDs and identified relevant shared disease
genes and shared disease functional modules.

Known causal congenital heart disease (CHD) genes and
genes differentially expressed in this disease (named target
genes) were mapped onto a PPI network with the aim of
identifying gene modules relevant to CHD [62].The network
was modelled as an electrical circuit, where edges between
nodes (genes) were used as a conductance of a resistor
according to correlation of coexpression between the two
end nodes. Shortest paths from one causal gene to all target
genes were merged into a subnetwork, and the current flow
for each gene in the subnetwork was computed to evaluate
its importance. Genes were assigned to a subnetwork in
which they scored best. This resulted in 12 disjoint modules
for further analyses: relationships of individual modules
with disease phenotypes, mutual coexpression among genes
within the modules, functional enrichment, and pathway
analysis. As a result, candidate disease genes andhubmodules
that regulate key pathways of CHD were identified.

Functional modules of gene coexpression networks were
also explored in research of cardiac development, hypertro-
phy, and failure [63]. Datasets from microarray experiments
involving myocardial tissue were collected from GEO and
used for creating a weighted gene coexpression network,
where edges represent adjacencies between genes based
on weighted Pearson correlation between gene expression
profiles. Gene modules were identified using agglomerative
hierarchical clustering of adjacencies given by the topological
overlap measure based on shared network neighbours. The
modules were first identified in fetal tissue, followed by
evaluating their reproducibility in normal adult, hypertro-
phied, and failing myocardial tissue. The analysis revealed
specific gene coexpression modules that were present both in
developing heart and in hypertrophied or failing myocardial
tissue.

http://ki.se/start
http://www.ncbi.nlm.nih.gov/geo/
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Table 2: Methods that explored topology of biological networks in research of CVDs.

Network Type of data/interactions in
the network

Topological analysis
performed on the data Aims of topological analysis Reference

Heart failure (HF)
network

HF relevant genes, genes
differentially expressed in HF
and dilated cardiomyopathy
(DCM), and PPI data

Connectivity of nodes

Relationship between gene
connectivity and gene
coexpression levels and
their biological functions

[54, 56]

Network of
atherosclerosis

Literature associations and
gene expression data

Network modules
identified based on
closeness centrality

GO enrichment of network
modules [57]

Network of
ischemic dilated
cardiomyopathy
(ICM)

Genes differentially expressed
in ICM, cardiac myocytes
proteins, and PPI data

Number of edges between
network clusters

Correlation between
number of edges between
network clusters and
differential gene expression
patterns

[60]

Cardiovascular
disease “functional
linkage network”
(CFN)

CVD proteins and PPI data
Degree distribution,
betweenness centrality, and
modularity measure

Associating functional
modules (highly connected
subgraphs) with diseases

[61]

Congenital heart
disease (CHD)
network

Known CHD genes, genes
differentially expressed in
CHD, and PPI data

Subnetworks based on
shortest paths and current
flow (network was
modelled as an electrical
circuit)

Functional subnetwork
analysis in search of key
pathways of CHD

[62]

Networks for
analysis of cardiac
development,
hypertrophy, and
failure

Gene coexpression data
Network modules based on
hierarchical clustering and
shared network neighbours

Identifying common
modules in networks of
different types of
myocardial tissue

[63]

Human PPI
network PPI data

Node degree,
neighbourhood
enrichment, betweenness
centrality, clustering
coefficient, and shortest
path length

Inferring coronary artery
disease genes based on
topological information

[65]

Human PPI
network PPI data

Clustering nodes based on
graphlet degree vector
similarity

Inferring new CVD genes
based on clusters’
enrichment in CVD genes

[66]

3.3. Methods for Utilizing Network Topology in CVD Research.
In previous section, we described a variety of methods
that used biological networks in search of genes, pathways,
orfunctional modules that are significant for different types
of CVDs.

We see that the majority of approaches focused oncon-
structing biological networks of particular cardiovasculardis-
orders. Several approaches further explored topologicalprop-
erties of these networks and use them in search ofnew
CVD knowledge. In particular, modules in the networkof
atherosclerosis [57] were identified based on closenesscen-
trality. Functional modules of a CVD network used forinves-
tigating relationships between CVD and other disorderswere
identified using modularity measure based solely onnetwork
topology [61]. The method for identifying modulesin CHD
utilized shortest paths in the network between genesof
interest [62]. Also, some basic topological properties, suchas
node connectivity [54, 56], or the number of interactionsbe-
tween functional sets [60], were examined in correlationwith

disease. Note that the vast majority of the above-presented
topological analyses focused on CVD subnetworks in isola-
tion, rather than observing them as parts of a larger, more
complete interaction network, such as the entire human PPI
network.

Thismay be a limiting factor when exploring the interplay
between genes involved in different CVD disorders or when
targeting genes that have previously not been connected to
CVDs. The importance of observing the neighbourhood of
disease genes in the entire PPI network was emphasized in
one of the studies related to atherosclerosis [64]. Functional
enrichment test performed only on differentially expressed
genes failed to detect biological processes related to the
disease progression. However, the network that included
both differentially expressed genes and genes that have
high connectivity with them in the entire PPI network was
functionally enriched in relevant biological processes. This
analysis showed that the regulators of disease progression
should be looked for among genes that are not necessarily
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differentially expressed and within the context of the entire
available PPI network.

We summarized the methods that used topology of
biological networks in research of CVDs in Table 2. There
are only few approaches that identified new genes relevant
to CVDs relying solely on topological properties of entire
PPInetwork.The example is the computationalmethod based
onsix topological features (degree, neighbour count of dis-
easegenes, ratio of disease genes amongneighbours, between-
nesscentrality, clustering coefficient, andmean shortest path-
length to disease gene) [65]. The constructed classifier
wasused on the PPI network to predict candidate genes
forcoronary artery disease.

The PPI network topology was also used for inferring-
proteins’ involvement in CVDs as follows [66]. Proteinswere
clustered based on the similarity of topologies oftheir neigh-
bourhoods in the PPI network, measured usingGDV simi-
larity [30]. The clusters were then checked forenrichment in
CVD genes. The overlap of statistically significantlyenriched
clusters contained 10 key CVD genes and17 predicted new
CVD related genes. More than 70% ofthese predictions were
validated in the literature. Also, both key CVD genes andpre-
dicted CVD genes were enriched inbiological functions that
CVD drug mechanisms rely on,showing that this approach
may be successful in identifyingpotential drug targets.

4. Conclusion

The emerging interest in molecular interaction networks
ofvarious cardiovascular diseases has resulted in a numberof
association, gene expression, PPI, and transcriptionalregula-
tory networks being examined to study atherosclerosis, in-st-
ent restenosis, heart failure, dilated cardiomyopathy,ischemic
dilated cardiomyopathy, and CVDs in general.Many of these
networks were constructed using experimentaldata com-
bined with literature mining, with the aim ofidentifying
a broader set of genes involved in a particular cardiovas-
culardisorder. These networks are a valuable platformfor
exploring the mechanisms of the disease. Nevertheless,their
topologies have not been fully explored.

We surveyed studies that explored the link between
somebasic topological properties of CVD genes in networks
andinvolvement of these genes in specific disease related
processes. Several CVD networks were checked for enrich-
mentin biological functions relevant to the disease, and
functionalmodules in the networks were identified, in some
cases usingtopological properties. However, topological anal-
ysis wasusually limited to the disease specific subnetwork,
withoutobserving it in the context of a larger, more complete
network.Such complete interaction networks were analysed
only infew studies, which explored the topology around
genes thatwere previously not associated with CVD and thus
notpresent in the disease specific subnetwork. This resulted
inpredictions of novel CVD genes.

There is a huge potential in analysing CVD related-
molecular subnetworks and their topology in the contextof
the complete biomolecular interaction networks. Suchap-
proaches could give better insight into interconnectednessof
different CVDs. They could help discover novel CVDgenes

and pathways responsible for the dependency between dif-
ferent disorders.

Conflict of Interests

The authors declare that there is no conflict of interests regar-
ding the publication of this paper.

Acknowledgments

This work was supported by the European Research Council
(ERC) Starting Independent Researcher Grant 278212, the
National Science Foundation (NSF) Cyber-Enabled Discov-
ery and Innovation (CDI) OIA-1028394, the SerbianMinistry
of Education and Science Project III44006, andARRS Project
J1-5454.

References

[1] S. Alan Go, D.Mozaffarian, V. L. Roger et al., “Executive summ-
ary: heart disease and stroke statistics—2013 update: a report
from the american heart association,” Circulation, vol. 127, no. 1,
pp. 143–152, 2013.

[2] D. B. Mark, F. J. van de Werf, R. J. Simes et al., “Cardiovascular
disease on a global scale: defining the path forward for research
and practice,” European Heart Journal, vol. 28, no. 21, pp. 2678–
2684, 2007.

[3] S. Kathiresan and D. Srivastava, “Genetics of human cardiovas-
cular disease,” Cell, vol. 148, no. 6, pp. 1242–1257, 2012.
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